import os import pickle from documents.models import Correspondent, DocumentType, Tag from paperless import settings def preprocess_content(content): content = content.lower() content = content.strip() content = content.replace("\n", " ") content = content.replace("\r", " ") while content.find(" ") > -1: content = content.replace(" ", " ") return content class DocumentClassifier(object): classifier_version = None data_vectorizer = None tags_binarizer = None correspondent_binarizer = None type_binarizer = None tags_classifier = None correspondent_classifier = None type_classifier = None @staticmethod def load_classifier(): clf = DocumentClassifier() clf.reload() return clf def reload(self): if self.classifier_version is None or os.path.getmtime(settings.MODEL_FILE) > self.classifier_version: print("reloading classifier") with open(settings.MODEL_FILE, "rb") as f: self.data_vectorizer = pickle.load(f) self.tags_binarizer = pickle.load(f) self.correspondent_binarizer = pickle.load(f) self.type_binarizer = pickle.load(f) self.tags_classifier = pickle.load(f) self.correspondent_classifier = pickle.load(f) self.type_classifier = pickle.load(f) self.classifier_version = os.path.getmtime(settings.MODEL_FILE) def save_classifier(self): with open(settings.MODEL_FILE, "wb") as f: pickle.dump(self.data_vectorizer, f) pickle.dump(self.tags_binarizer, f) pickle.dump(self.correspondent_binarizer, f) pickle.dump(self.type_binarizer, f) pickle.dump(self.tags_classifier, f) pickle.dump(self.correspondent_classifier, f) pickle.dump(self.type_classifier, f) def classify_document(self, document, classify_correspondent=False, classify_type=False, classify_tags=False): X = self.data_vectorizer.transform([preprocess_content(document.content)]) update_fields=() if classify_correspondent: y_correspondent = self.correspondent_classifier.predict(X) correspondent = self.correspondent_binarizer.inverse_transform(y_correspondent)[0] print("Detected correspondent:", correspondent) document.correspondent = Correspondent.objects.filter(name=correspondent).first() update_fields = update_fields + ("correspondent",) if classify_type: y_type = self.type_classifier.predict(X) type = self.type_binarizer.inverse_transform(y_type)[0] print("Detected document type:", type) document.document_type = DocumentType.objects.filter(name=type).first() update_fields = update_fields + ("document_type",) if classify_tags: y_tags = self.tags_classifier.predict(X) tags = self.tags_binarizer.inverse_transform(y_tags)[0] print("Detected tags:", tags) document.tags.add(*[Tag.objects.filter(name=t).first() for t in tags]) document.save(update_fields=update_fields)